1,103 research outputs found

    Proposal of Verticiella gen. nov as replacement for the illegitimate prokaryotic genus name Verticia Vandamme et al. 2015

    Get PDF
    The prokaryotic genus name Verticia Vandamme et al. 2015 is illegitimate because it is a later homonym of the insect genus name Verticia Malloch 1927 [Principle 2, Rule 51b(4) of the Prokaryotic Code (2008 Revision)]. This name is therefore not a correct name (Principle 6), and a replacement genus name must be proposed (Rule 54)

    Screening for taxon-specific peptides using dynamic index structures

    Get PDF

    Members of the genus Burkholderia: good and bad guys [version 1]

    Get PDF
    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains

    Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome

    Get PDF
    BACKGROUND: Ralstonia solanacearum is an important plant pathogen. The genome of R. solananearum GMI1000 is organised into two replicons (a 3.7-Mb chromosome and a 2.1-Mb megaplasmid) and this bipartite genome structure is characteristic for most R. solanacearum strains. To determine whether the megaplasmid was acquired via recent horizontal gene transfer or is part of an ancestral single chromosome, we compared the abundance, distribution and compositon of simple sequence repeats (SSRs) between both replicons and also compared the respective compositional biases. RESULTS: Our data show that both replicons are very similar in respect to distribution and composition of SSRs and presence of compositional biases. Minor variations in SSR and compositional biases observed may be attributable to minor differences in gene expression and regulation of gene expression or can be attributed to the small sample numbers observed. CONCLUSIONS: The observed similarities indicate that both replicons have shared a similar evolutionary history and thus suggest that the megaplasmid was not recently acquired from other organisms by lateral gene transfer but is a part of an ancestral R. solanacearum chromosome

    PCR detection of Burkholderia multivorans in water and soil samples

    Get PDF
    Background: Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. Results: A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. Conclusions: The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium)
    corecore